Из школьного курса математики мы знаем, что квадрат — это четырёхугольник у которого все углы прямые, а все стороны равны.

Диагональ — отрезок, соединяющий две противоположные вершины квадрата. Задача нахождения диагонали квадрата может встретиться и после окончания школы. К примеру, при постройке дома у которого фундамент должен быть квадратным. Когда размечается фундамент, мало убедиться, что все 4 стороны равны. Ведь у ромба тоже все стороны равны. И получить ромбовидный фундамент вряд ли кто захочет.

В этом случае, чтобы убедиться в том, что фундамент действительно представляет собой квадрат, вычисляют диагональ квадрата и измеряют обе диагонали фундамента. Если все 4 стороны равны между собой и две диагонали также имеют одинаковую длину — фундамент точно будет квадратным. Для вычисления длины диагонали квадрата достаточно знать длину его стороны и простую формулу.

Как найти диагональ квадрата

d=a \cdot \sqrt{2}

d — диагональ квадрата

a — сторона квадрата

Достаточно подставить в формулу длину стороны квадрата вместо a.

А можно воспользоваться нашим калькулятором. Просто введите длину стороны и тут же получите длину диагонали квадрата. У нас также можно найти диагональ прямоугольника.

Диагональ квадрата онлайн

Введите длину стороны квадрата:
Диагональ квадрата

Сторона квадрата:

Примеры нахождения диагонали квадрата

Найдем диагональ квадрата со стороной 3 см.

Подставим в формулу вместо a число 3 и получим d=3 \cdot \sqrt{2} = \sqrt{3^2 \cdot 2} = \sqrt{18} = 4,24264


Найдем диагональ квадрата со сторонами 2 на 2 см.

Подставим в формулу вместо a число 3 и получим d=2 \cdot \sqrt{2} = \sqrt{2^2 \cdot 2} = \sqrt{8} = 2,828427

Ваша оценка
[Оценок: 11 Средняя: 4.8]
Диагональ квадрата формула и расчет Автор admin средний рейтинг 4.8/5 - 11 рейтинги пользователей